Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations
Carlos Alegría (),
David Orden (),
Carlos Seara () and
Jorge Urrutia ()
Additional contact information
Carlos Alegría: Università Roma Tre
David Orden: Universidad de Alcalá
Carlos Seara: Universitat Politècnica de Catalunya
Jorge Urrutia: Universidad Nacional Autónoma de México
Journal of Global Optimization, 2021, vol. 79, issue 3, No 7, 687-714
Abstract:
Abstract Let P be a set of n points in the plane. We compute the value of $$\theta \in [0,2\pi )$$ θ ∈ [ 0 , 2 π ) for which the rectilinear convex hull of P, denoted by $$\mathcal {RH}_{P}({\theta })$$ RH P ( θ ) , has minimum (or maximum) area in optimal $$O(n\log n)$$ O ( n log n ) time and O(n) space, improving the previous $$O(n^2)$$ O ( n 2 ) bound. Let $$\mathcal {O}$$ O be a set of k lines through the origin sorted by slope and let $$\alpha _i$$ α i be the sizes of the 2k angles defined by pairs of two consecutive lines, $$i=1, \ldots , 2k$$ i = 1 , … , 2 k . Let $$\Theta _{i}=\pi -\alpha _i$$ Θ i = π - α i and $$\Theta =\min \{\Theta _i :i=1,\ldots ,2k\}$$ Θ = min { Θ i : i = 1 , … , 2 k } . We obtain: (1) Given a set $$\mathcal {O}$$ O such that $$\Theta \ge \frac{\pi }{2}$$ Θ ≥ π 2 , we provide an algorithm to compute the $$\mathcal {O}$$ O -convex hull of P in optimal $$O(n\log n)$$ O ( n log n ) time and O(n) space; If $$\Theta
Keywords: Rectilinear convex hull; Restricted orientation convex hull; Minimum area (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-020-00953-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00953-5
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-020-00953-5
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().