EconPapers    
Economics at your fingertips  
 

Linearization of McCormick relaxations and hybridization with the auxiliary variable method

Jaromił Najman, Dominik Bongartz and Alexander Mitsos ()
Additional contact information
Jaromił Najman: RWTH Aachen University
Dominik Bongartz: RWTH Aachen University
Alexander Mitsos: RWTH Aachen University

Journal of Global Optimization, 2021, vol. 80, issue 4, No 1, 756 pages

Abstract: Abstract The computation of lower bounds via the solution of convex lower bounding problems depicts current state-of-the-art in deterministic global optimization. Typically, the nonlinear convex relaxations are further underestimated through linearizations of the convex underestimators at one or several points resulting in a lower bounding linear optimization problem. The selection of linearization points substantially affects the tightness of the lower bounding linear problem. Established methods for the computation of such linearization points, e.g., the sandwich algorithm, are already available for the auxiliary variable method used in state-of-the-art deterministic global optimization solvers. In contrast, no such methods have been proposed for the (multivariate) McCormick relaxations. The difficulty of determining a good set of linearization points for the McCormick technique lies in the fact that no auxiliary variables are introduced and thus, the linearization points have to be determined in the space of original optimization variables. We propose algorithms for the computation of linearization points for convex relaxations constructed via the (multivariate) McCormick theorems. We discuss alternative approaches based on an adaptation of Kelley’s algorithm; computation of all vertices of an n-simplex; a combination of the two; and random selection. All algorithms provide substantial speed ups when compared to the single point strategy used in our previous works. Moreover, we provide first results on the hybridization of the auxiliary variable method with the McCormick technique benefiting from the presented linearization strategies resulting in additional computational advantages.

Keywords: Global optimization; McCormick; Linearization; MAiNGO; 49M20; 49M37; 65K05; 90C26 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-020-00977-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-020-00977-x

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-020-00977-x

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-020-00977-x