EconPapers    
Economics at your fingertips  
 

Optimizing generalized kernels of polygons

Alejandra Martinez-Moraian (), David Orden (), Leonidas Palios (), Carlos Seara () and Paweł Żyliński ()
Additional contact information
Alejandra Martinez-Moraian: Universidad de Alcalá
David Orden: Universidad de Alcalá
Leonidas Palios: University of Ioannina
Carlos Seara: Universitat Politècnica de Catalunya
Paweł Żyliński: University of Gdańsk

Journal of Global Optimization, 2021, vol. 80, issue 4, No 7, 887-920

Abstract: Abstract Let $$\mathcal {O}$$ O be a set of k orientations in the plane, and let P be a simple polygon in the plane. Given two points p, q inside P, we say that p $$\mathcal {O}$$ O -sees q if there is an $$\mathcal {O}$$ O -staircase contained in P that connects p and q. The $$\mathcal {O}$$ O -Kernel of the polygon P, denoted by $$\mathcal {O}$$ O - $$\mathrm{Kernel }(P)$$ Kernel ( P ) , is the subset of points of P which $$\mathcal {O}$$ O -see all the other points in P. This work initiates the study of the computation and maintenance of $$\mathcal {O}$$ O - $$\mathrm{Kernel }(P)$$ Kernel ( P ) as we rotate the set $$\mathcal {O}$$ O by an angle $$\theta $$ θ , denoted by $$\mathcal {O}$$ O - $$\mathrm{Kernel }_{\theta }(P)$$ Kernel θ ( P ) . In particular, we consider the case when the set $$\mathcal {O}$$ O is formed by either one or two orthogonal orientations, $$\mathcal {O}=\{0^\circ \}$$ O = { 0 ∘ } or $$\mathcal {O}=\{0^\circ ,90^\circ \}$$ O = { 0 ∘ , 90 ∘ } . For these cases and P being a simple polygon, we design efficient algorithms for computing the $$\mathcal {O}$$ O - $$\mathrm{Kernel }_{\theta }(P)$$ Kernel θ ( P ) while $$\theta $$ θ varies in $$[-\frac{\pi }{2},\frac{\pi }{2})$$ [ - π 2 , π 2 ) , obtaining: (i) the intervals of angle $$\theta $$ θ where $$\mathcal {O}$$ O - $$\mathrm{Kernel }_{\theta }(P)$$ Kernel θ ( P ) is not empty, (ii) a value of angle $$\theta $$ θ where $$\mathcal {O}$$ O - $$\mathrm{Kernel }_{\theta }(P)$$ Kernel θ ( P ) optimizes area or perimeter. Further, we show how the algorithms can be improved when P is a simple orthogonal polygon. In addition, our results are extended to the case of a set $$\mathcal {O}=\{\alpha _1,\dots ,\alpha _k\}$$ O = { α 1 , ⋯ , α k } .

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01020-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-021-01020-3

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-021-01020-3

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:80:y:2021:i:4:d:10.1007_s10898-021-01020-3