A modified simplex partition algorithm to test copositivity
Mohammadreza Safi (),
Seyed Saeed Nabavi () and
Richard J. Caron ()
Additional contact information
Mohammadreza Safi: University of Windsor
Seyed Saeed Nabavi: Semnan University
Richard J. Caron: University of Windsor
Journal of Global Optimization, 2021, vol. 81, issue 3, No 4, 645-658
Abstract:
Abstract A real symmetric matrix A is copositive if $$x^\top Ax\ge 0$$ x ⊤ A x ≥ 0 for all $$x\ge 0$$ x ≥ 0 . As A is copositive if and only if it is copositive on the standard simplex, algorithms to determine copositivity, such as those in Sponsel et al. (J Glob Optim 52:537–551, 2012) and Tanaka and Yoshise (Pac J Optim 11:101–120, 2015), are based upon the creation of increasingly fine simplicial partitions of simplices, testing for copositivity on each. We present a variant that decomposes a simplex $$\bigtriangleup $$ △ , say with n vertices, into a simplex $$\bigtriangleup _1$$ △ 1 and a polyhedron $$\varOmega _1$$ Ω 1 ; and then partitions $$\varOmega _1$$ Ω 1 into a set of at most $$(n-1)$$ ( n - 1 ) simplices. We show that if A is copositive on $$\varOmega _1$$ Ω 1 then A is copositive on $$\bigtriangleup _1$$ △ 1 , allowing us to remove $$\bigtriangleup _1$$ △ 1 from further consideration. Numerical results from examples that arise from the maximum clique problem show a significant reduction in the time needed to establish copositivity of matrices.
Keywords: Copositive matrix; Maximum clique problem; Simplex; Semidefinite programming; Copositive programming; MSC 65K05; MSC 90C22; MSC 90C99 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01092-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-021-01092-1
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-021-01092-1
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().