EconPapers    
Economics at your fingertips  
 

An alternative perspective on copositive and convex relaxations of nonconvex quadratic programs

E. Alper Yıldırım ()
Additional contact information
E. Alper Yıldırım: The University of Edinburgh

Journal of Global Optimization, 2022, vol. 82, issue 1, No 1, 20 pages

Abstract: Abstract We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.

Keywords: Nonconvex quadratic programs; Copositive relaxation; Doubly nonnegative relaxation; Convex relaxation; Convex envelope; 90C20; 90C25; 90C26 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01066-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:82:y:2022:i:1:d:10.1007_s10898-021-01066-3

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-021-01066-3

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:82:y:2022:i:1:d:10.1007_s10898-021-01066-3