EconPapers    
Economics at your fingertips  
 

On nondegenerate M-stationary points for sparsity constrained nonlinear optimization

S. Lämmel () and V. Shikhman ()
Additional contact information
S. Lämmel: Chemnitz University of Technology
V. Shikhman: Chemnitz University of Technology

Journal of Global Optimization, 2022, vol. 82, issue 2, No 1, 219-242

Abstract: Abstract We study sparsity constrained nonlinear optimization (SCNO) from a topological point of view. Special focus will be on M-stationary points from Burdakov et al. (SIAM J Optim 26:397–425, 2016), also introduced as $$N^C$$ N C -stationary points in Pan et al. (J Oper Res Soc China 3:421–439, 2015). We introduce nondegenerate M-stationary points and define their M-index. We show that all M-stationary points are generically nondegenerate. In particular, the sparsity constraint is active at all local minimizers of a generic SCNO. Some relations to other stationarity concepts, such as S-stationarity, basic feasibility, and CW-minimality, are discussed in detail. By doing so, the issues of instability and degeneracy of points due to different stationarity concepts are highlighted. The concept of M-stationarity allows to adequately describe the global structure of SCNO along the lines of Morse theory. For that, we study topological changes of lower level sets while passing an M-stationary point. As novelty for SCNO, multiple cells of dimension equal to the M-index are needed to be attached. This intriguing fact is in strong contrast with other optimization problems considered before, where just one cell suffices. As a consequence, we derive a Morse relation for SCNO, which relates the numbers of local minimizers and M-stationary points of M-index equal to one. The appearance of such saddle points cannot be thus neglected from the perspective of global optimization. Due to the multiplicity phenomenon in cell-attachment, a saddle point may lead to more than two different local minimizers. We conclude that the relatively involved structure of saddle points is the source of well-known difficulty if solving SCNO to global optimality.

Keywords: Sparsity constraint; M-stationarity; M-index; Nondegeneracy; Genericity; Morse theory; Saddle points (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01070-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01070-7

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-021-01070-7

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01070-7