Low-rank matrix recovery with Ky Fan 2-k-norm
Xuan Vinh Doan () and
Stephen Vavasis ()
Additional contact information
Xuan Vinh Doan: University of Warwick
Stephen Vavasis: University of Waterloo
Journal of Global Optimization, 2022, vol. 82, issue 4, No 4, 727-751
Abstract:
Abstract Low-rank matrix recovery problem is difficult due to its non-convex properties and it is usually solved using convex relaxation approaches. In this paper, we formulate the non-convex low-rank matrix recovery problem exactly using novel Ky Fan 2-k-norm-based models. A general difference of convex functions algorithm (DCA) is developed to solve these models. A proximal point algorithm (PPA) framework is proposed to solve sub-problems within the DCA, which allows us to handle large instances. Numerical results show that the proposed models achieve high recoverability rates as compared to the truncated nuclear norm method and the alternating bilinear optimization approach. The results also demonstrate that the proposed DCA with the PPA framework is efficient in handling larger instances.
Keywords: Rank minimization; Ky Fan 2-k-norm; Matrix recovery (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01031-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:82:y:2022:i:4:d:10.1007_s10898-021-01031-0
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-021-01031-0
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().