EconPapers    
Economics at your fingertips  
 

Which graphs are rigid in $$\ell _p^d$$ ℓ p d ?

Sean Dewar (), Derek Kitson () and Anthony Nixon ()
Additional contact information
Sean Dewar: Austrian Academy of Sciences
Derek Kitson: Lancaster University
Anthony Nixon: Lancaster University

Journal of Global Optimization, 2022, vol. 83, issue 1, No 4, 49-71

Abstract: Abstract We present three results which support the conjecture that a graph is minimally rigid in d-dimensional $$\ell _p$$ ℓ p -space, where $$p\in (1,\infty )$$ p ∈ ( 1 , ∞ ) and $$p\not =2$$ p ≠ 2 , if and only if it is (d, d)-tight. Firstly, we introduce a graph bracing operation which preserves independence in the generic rigidity matroid when passing from $$\ell _p^d$$ ℓ p d to $$\ell _p^{d+1}$$ ℓ p d + 1 . We then prove that every (d, d)-sparse graph with minimum degree at most $$d+1$$ d + 1 and maximum degree at most $$d+2$$ d + 2 is independent in $$\ell _p^d$$ ℓ p d . Finally, we prove that every triangulation of the projective plane is minimally rigid in $$\ell _p^3$$ ℓ p 3 . A catalogue of rigidity preserving graph moves is also provided for the more general class of strictly convex and smooth normed spaces and we show that every triangulation of the sphere is independent for 3-dimensional spaces in this class.

Keywords: Bar-joint framework; Infinitesimal rigidity; Rigidity matroid; Normed spaces; 52C25; 05C50 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-021-01008-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:83:y:2022:i:1:d:10.1007_s10898-021-01008-z

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-021-01008-z

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:83:y:2022:i:1:d:10.1007_s10898-021-01008-z