Finding non dominated points for multiobjective integer convex programs with linear constraints
Lamia Zerfa and
Mohamed El-Amine Chergui ()
Additional contact information
Lamia Zerfa: University Alger 1
Mohamed El-Amine Chergui: RECITS Laboratory
Journal of Global Optimization, 2022, vol. 84, issue 1, No 4, 95-117
Abstract:
Abstract In this paper, we present a branch-and-bound based algorithm to generate all non dominated points for a multiobjective integer programming problem with convex objective functions and linear constraints (MOICP). The principle is to solve a single objective program (P) defined from the original MOICP program with relaxed integrality constraints. Whenever an integer solution is found through the branching process, a node is created in the search tree for each criterion. That is, by adding a cutting plane that locally approximates the criterion, as to exclude a subset of dominated points. The nodes are traversed according to the depth-first strategy and the same process is repeated for the obtained programs as (P). Finally, as to illustrate the efficiency of the suggested algorithm, we present an experimental study, where we assess its efficiency using randomly generated quadratic multiobjective integer problems with linear constraints.
Keywords: Multiobjective convex programming; Non dominated point; Multiobjective quadratic programming; Branch-and-bound (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-022-01132-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:84:y:2022:i:1:d:10.1007_s10898-022-01132-4
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-022-01132-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().