Multidimensional Assignment Problem for Multipartite Entity Resolution
Alla Kammerdiner,
Alexander Semenov () and
Eduardo L. Pasiliao
Additional contact information
Alla Kammerdiner: University of Florida Research and Engineering Educational Facility (REEF)
Alexander Semenov: University of Florida
Eduardo L. Pasiliao: Eglin Air Force Base
Journal of Global Optimization, 2022, vol. 84, issue 2, No 10, 523 pages
Abstract:
Abstract Multipartite entity resolution aims at integrating records from multiple datasets into one entity. We derive a mathematical formulation for a general class of record linkage problems in multipartite entity resolution across many datasets as a combinatorial optimization problem known as the multidimensional assignment problem. As a motivation for our approach, we illustrate the advantage of multipartite entity resolution over sequential bipartite matching. Because the optimization problem is NP-hard, we apply two heuristic procedures, a Greedy algorithm and very large scale neighborhood search, to solve the assignment problem and find the most likely matching of records from multiple datasets into a single entity. We evaluate and compare the performance of these algorithms and their modifications on synthetically generated data. We perform computational experiments to compare performance of recent heuristic, the very large-scale neighborhood search, with a Greedy algorithm, another heuristic for the MAP, as well as with two versions of genetic algorithm, a general metaheuristic. Importantly, we perform experiments to compare two alternative methods of re-starting the search for the former heuristic, specifically a random-sampling multi-start and a deterministic design-based multi-start. We find evidence that design-based multi-start can be more efficient as the size of databases grow large. In addition, we show that very large scale search, especially its multi-start version, outperforms simple Greedy heuristic. Hybridization of Greedy search with very large scale neighborhood search improves the performance. Using multi-start with as few as three additional runs of very large scale search offers some improvement in the performance of the very large scale search procedure. Last, we propose an approach to evaluating complexity of the very large-scale neighborhood search.
Keywords: Multidimensional assignment problem; Multipartite entity resolution; Very large scale neighborhood search; Greedy algorithm; Genetic algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-022-01141-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:84:y:2022:i:2:d:10.1007_s10898-022-01141-3
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-022-01141-3
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().