EconPapers    
Economics at your fingertips  
 

Constrained multiobjective optimization of expensive black-box functions using a heuristic branch-and-bound approach

Donald R. Jones () and Alberto Lovison ()
Additional contact information
Donald R. Jones: University of Michigan
Alberto Lovison: University of Salento

Journal of Global Optimization, 2024, vol. 88, issue 4, No 6, 947-978

Abstract: Abstract While constrained, multiobjective optimization is generally very difficult, there is a special case in which such problems can be solved with a simple, elegant branch-and-bound algorithm. This special case is when the objective and constraint functions are Lipschitz continuous with known Lipschitz constants. Given these Lipschitz constants, one can compute lower bounds on the functions over subregions of the search space. This allows one to iteratively partition the search space into rectangles, deleting those rectangles which—based on the lower bounds—contain points that are all provably infeasible or provably dominated by previously sampled point(s). As the algorithm proceeds, the rectangles that have not been deleted provide a tight covering of the Pareto set in the input space. Unfortunately, for black-box optimization this elegant algorithm cannot be applied, as we would not know the Lipschitz constants. In this paper, we show how one can heuristically extend this branch-and-bound algorithm to the case when the problem functions are black-box using an approach similar to that used in the well-known DIRECT global optimization algorithm. We call the resulting method “simDIRECT.” Initial experience with simDIRECT on test problems suggests that it performs similar to, or better than, multiobjective evolutionary algorithms when solving problems with small numbers of variables (up to 12) and a limited number of runs (up to 600).

Keywords: Nonlinear constraints; Multiobjective optimization; Lipschitzian optimization; Black-box; Derivative-free; Deterministic; DIRECT (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-023-01336-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01336-2

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-023-01336-2

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01336-2