Modification and improved implementation of the RPD method for computing state relaxations for global dynamic optimization
Jason Ye () and
Joseph K. Scott ()
Additional contact information
Jason Ye: Georgia Institute of Technology
Joseph K. Scott: Georgia Institute of Technology
Journal of Global Optimization, 2024, vol. 89, issue 4, No 1, 833-861
Abstract:
Abstract This paper presents an improved method for computing convex and concave relaxations of the parametric solutions of ordinary differential equations (ODEs). These are called state relaxations and are crucial for solving dynamic optimization problems to global optimality via branch-and-bound (B &B). The new method improves upon an existing approach known as relaxation preserving dynamics (RPD). RPD is generally considered to be among the best available methods for computing state relaxations in terms of both efficiency and accuracy. However, it requires the solution of a hybrid dynamical system, whereas other similar methods only require the solution of a simple system of ODEs. This is problematic in the context of branch-and-bound because it leads to higher cost and reduced reliability (i.e., invalid relaxations can result if hybrid mode switches are not detected numerically). Moreover, there is no known sensitivity theory for the RPD hybrid system. This makes it impossible to compute subgradients of the RPD relaxations, which are essential for efficiently solving the associated B &B lower bounding problems. To address these limitations, this paper presents a small but important modification of the RPD theory, and a corresponding modification of its numerical implementation, that crucially allows state relaxations to be computed by solving a system of ODEs rather than a hybrid system. This new RPD method is then compared to the original using two examples and shown to be more efficient, more robust, and of almost identical accuracy.
Keywords: Global dynamic optimization; Convex relaxation; Reachability analysis; Optimal control (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-024-01381-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01381-5
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-024-01381-5
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().