Aircraft conflict resolution with trajectory recovery using mixed-integer programming
Fernando Dias () and
David Rey ()
Additional contact information
Fernando Dias: Aalto University
David Rey: Université Côte d’Azur
Journal of Global Optimization, 2024, vol. 90, issue 4, No 10, 1067 pages
Abstract:
Abstract To guarantee the safety of flight operations, decision-support systems for air traffic control must be able to improve the usage of airspace capacity and handle increasing demand. This study addresses the aircraft conflict avoidance and trajectory recovery problem. The problem of finding the least deviation conflict-free aircraft trajectories that guarantee the return to a target waypoint is highly complex due to the nature of the nonlinear trajectories that are sought. We present a two-stage iterative algorithm that first solves initial conflicts by manipulating their speed and heading control and then identifying each aircraft’s optimal time to recover its trajectory towards their nominal one. We extend existing mixed-integer programming formulations by modelling speed and heading control as continuous variables while recovery time is treated as a discrete variable. We develop a novel iterative approach which shows that the trajectory recovery costs can be anticipated by inducing avoidance trajectories with higher deviation, therefore obtaining earlier recovery time within a few iterations. Numerical results on benchmark conflict resolution problems show that this approach can solve instances with up to 30 aircraft within 10 min.
Keywords: Air traffic control; Conflict resolution; Trajectory recovery; Mixed integer programming (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-024-01393-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:90:y:2024:i:4:d:10.1007_s10898-024-01393-1
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-024-01393-1
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().