Characterization of Usage Data with the Help of Data Classifications
Melina Panzner (),
Sebastian Enzberg,
Maurice Meyer and
Roman Dumitrescu
Additional contact information
Melina Panzner: University of Paderborn
Sebastian Enzberg: Fraunhofer Institute for Mechatronic Systems Design
Maurice Meyer: University of Paderborn
Roman Dumitrescu: University of Paderborn
Journal of the Knowledge Economy, 2024, vol. 15, issue 1, No 5, 88-109
Abstract:
Abstract Comprehensive data understanding is a key success driver for data analytics projects. Knowing the characteristics of the data helps a lot in selecting the appropriate data analysis techniques. Especially in data-driven product planning, knowledge about the data is a necessary prerequisite because data of the use phase is very heterogeneous. However, companies often do not have the necessary know-how or time to build up solid data understanding in connection with data analysis. In this paper, we develop a methodology to organize and categorize and thus understand use phase data in a way that makes it accessible to general data analytics workflows, following a design science research approach. We first present a knowledge base that lists typical use phase data from a product planning view. Second, we develop a taxonomy based on standard literature and real data objects, which covers the diversity of the data considered. The taxonomy provides 8 dimensions that support classification of use phase data and allows to capture data characteristics from a data analytics view. Finally, we combine both views by clustering the objects of the knowledge base according to the taxonomy. Each of the resulting clusters covers a typical combination of analytics relevant characteristics occurring in practice. By abstracting from the diversity of use phase data into artifacts with manageable complexity, our approach provides guidance to choose appropriate data analysis and AI techniques.
Keywords: Usage Data; Use phase data; Data understanding; Product planning; Data analytics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13132-022-01081-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-022-01081-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/13132
DOI: 10.1007/s13132-022-01081-z
Access Statistics for this article
Journal of the Knowledge Economy is currently edited by Elias G. Carayannis
More articles in Journal of the Knowledge Economy from Springer, Portland International Center for Management of Engineering and Technology (PICMET)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().