Combining simulated annealing with local search heuristic for MAX-SAT
Noureddine Bouhmala ()
Additional contact information
Noureddine Bouhmala: SouthEast University
Journal of Heuristics, 2019, vol. 25, issue 1, No 2, 47-69
Abstract:
Abstract The simplicity of the maximum satisfiability problem combined with its wide applicability in various areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses in a Boolean Formula. The present consensus is that the best heuristic that leads to the best solutions for the partitioning of generic (random) graphs is a variable depth search due to Kernighan and Lin algorithm hereafter referred to as KL. It suggests an intriguing idea which is based on replacing the search of one favorable move by a search for a favorable sequence of moves. In this paper, an adapted version of KL for the maximum satisfiability problem is introduced and embedded into the simulated annealing algorithm. Tests on benchmark instances and comparison with state-of-the-art solvers quantify the power of the method.
Keywords: Maximum satisfiability problem; Kernighan–Lin; Simulated annealing (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10732-018-9386-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9386-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732
DOI: 10.1007/s10732-018-9386-9
Access Statistics for this article
Journal of Heuristics is currently edited by Manuel Laguna
More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().