EconPapers    
Economics at your fingertips  
 

CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines

Javier Ferrer (), Francisco Chicano () and José Antonio Ortega-Toro ()
Additional contact information
Javier Ferrer: Universidad de Málaga
Francisco Chicano: Universidad de Málaga
José Antonio Ortega-Toro: VirusTotal

Journal of Heuristics, 2021, vol. 27, issue 1, No 10, 229-249

Abstract: Abstract In Software Product Lines, it may be difficult or even impossible to test all the products of the family because of the large number of valid feature combinations that may exist (Ferrer et al. in: Squillero, Sim (eds) EvoApps 2017, LNCS 10200, Springer, The Netherlands, pp 3–19, 2017). Thus, we want to find a minimal subset of the product family that allows us to test all these possible combinations (pairwise). Furthermore, when testing a single product is a great effort, it is desirable to first test products composed of a set of priority features. This problem is called Prioritized Pairwise Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear Programming for this problem are faster enough for small and medium instances. However, there exists some real instances that are too large to be computed with these algorithms in a reasonable time because of the exponential growth of the number of candidate solutions. Also, these heuristics not always lead us to the best solutions. In this work we propose a new approach based on a hybrid metaheuristic algorithm called Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms: a Hybrid algorithm based on Integer Linear Programming, a Hybrid algorithm based on Integer Nonlinear Programming, the Parallel Prioritized Genetic Solver, and a greedy algorithm called prioritized-ICPL. The analysis reveals that CMSA is statistically significantly better in terms of quality of solutions in most of the instances and for most levels of weighted coverage, although it requires more execution time.

Keywords: Matheuristics; CMSA; Integer programming; Software product lines; Hybrid algorithms; Combinatorial optimization; Feature models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10732-020-09462-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-020-09462-w

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732

DOI: 10.1007/s10732-020-09462-w

Access Statistics for this article

Journal of Heuristics is currently edited by Manuel Laguna

More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-020-09462-w