Enhancing large neighbourhood search heuristics for Benders’ decomposition
Stephen J. Maher ()
Additional contact information
Stephen J. Maher: Lancaster University
Journal of Heuristics, 2021, vol. 27, issue 4, No 4, 615-648
Abstract:
Abstract A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search heuristics is limited to finding solutions to the BD master problem. Given the lack of general frameworks for BD, only ad hoc approaches have been developed to enhance the ability of BD to find high quality primal feasible solutions through the use of large neighbourhood search heuristics. The general BD framework of SCIP has been extended with a trust region based heuristic and a general enhancement for large neighbourhood search heuristics. The general enhancement employs BD to solve the auxiliary problems of all large neighbourhood search heuristics to improve the quality of the identified solutions. The computational results demonstrate that the trust region heuristic and a general large neighbourhood search enhancement technique accelerate the improvement in the primal bound when applying BD.
Keywords: Benders’ decomposition; Large neighbourhood search; Enhancement techniques; Mixed integer programming (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10732-021-09467-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09467-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732
DOI: 10.1007/s10732-021-09467-z
Access Statistics for this article
Journal of Heuristics is currently edited by Manuel Laguna
More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().