Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics
Mohamed Abouhawwash () and
Kalyanmoy Deb ()
Additional contact information
Mohamed Abouhawwash: Mansoura University
Kalyanmoy Deb: Michigan State University
Journal of Heuristics, 2021, vol. 27, issue 4, No 3, 575-614
Abstract:
Abstract In a preference-based multi-objective optimization task, the goal is to find a subset of the Pareto-optimal set close to a supplied set of aspiration points. The reference point based non-dominated sorting genetic algorithm (R-NSGA-II) was proposed for such problem-solving tasks. R-NSGA-II aims to finding Pareto-optimal points close, in the sense of Euclidean distance in the objective space, to the supplied aspiration points, instead of finding the entire Pareto-optimal set. In this paper, R-NSGA-II method is modified using recently proposed Karush–Kuhn–Tucker proximity measure (KKTPM) and achievement scalarization function (ASF) metrics, instead of Euclidean distance metric. While a distance measure may not produce desired solutions, KKTPM-based distance measure allows a theoretically-convergent local or global Pareto solutions satisfying KKT optimality conditions and the ASF measure allows Pareto-compliant solutions to be found. A new technique for calculating KKTPM measure of a solution in the presence of an aspiration point is developed in this paper. The proposed modified R-NSGA-II methods are able to solve as many as 10-objective problems as effectively or better than the existing R-NSGA-II algorithm.
Keywords: Decision maker; Evolutionary algorithms; Aspiration point; KKTPM metric; Achievement scalarization function (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10732-021-09470-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09470-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732
DOI: 10.1007/s10732-021-09470-4
Access Statistics for this article
Journal of Heuristics is currently edited by Manuel Laguna
More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().