A MILP model and a heuristic algorithm for post-disaster connectivity problem with heterogeneous vehicles
İlknur Tükenmez (),
Tugba Saraç () and
Onur Kaya ()
Additional contact information
İlknur Tükenmez: Industrial Engineering Department
Tugba Saraç: Industrial Engineering Department
Onur Kaya: Industrial Engineering Department
Journal of Heuristics, 2024, vol. 30, issue 5, No 5, 359-396
Abstract:
Abstract Throughout the response phase of the disaster, the speedy restoration of transportation by reconnecting the nodes where the connection is broken is absolutely critical for evacuating civilians, providing clear access to hospitals, and distributing aid. Following a disaster, some roads in a disaster area might be closed to transportation. In reality, some roads can be blocked due to debris, and some of roads can be blocked by collapsing. In this model, different types of road unblocking methods are included, and each road can only be opened to access by a vehicle suitable for that method. So, different types of vehicles may be needed to repair the roads depending on the type of damage. In addition, fast-built bridges built both on land and over water are also used if necessary following a disaster. In problems of this nature, it is essential to restore the roads to enable the complete connectivity of the network such that all nodes can be reached by one another. In addition, it is also critical for the speedy reach of critical nodes, such as hospitals, and emergency disaster centers. This study aims to reduce the maximum time for connection and minimize the total time in which to reach critical nodes. For this purpose, we developed a bi-objective mathematical model that considers the multiple vehicle types that can repair different types of damages. Since the problem is NP-hard, two heuristic methods were developed, and the numerical results were presented. It has been observed that the local search algorithm gives better results than the hybrid algorithm. Additionally, different scenario data was produced. Numbers of unconnected components from 3 to 10 are solved with heuristic algorithms for test data containing 80 and 250 nodes, and real-life data containing 223 nodes and 391 edges are solved with heuristic algorithms for the number of unconnected components 6, 9, 12, and 15.
Keywords: Connectivity problem; Arc routing; Local search algorithm; Hybrid algorithm; Disaster management (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10732-024-09531-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:joheur:v:30:y:2024:i:5:d:10.1007_s10732-024-09531-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10732
DOI: 10.1007/s10732-024-09531-4
Access Statistics for this article
Journal of Heuristics is currently edited by Manuel Laguna
More articles in Journal of Heuristics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().