The Law of the Iterated Logarithm for Functionals of Harris Recurrent Markov Chains: Self Normalization
Xia Chen ()
Additional contact information
Xia Chen: Northwestern University
Journal of Theoretical Probability, 1999, vol. 12, issue 2, 421-445
Abstract:
Abstract Let {X n } n≥0 be a Harris recurrent Markov chain with state space E, transition probability P(x, A) and invariant measure π, and let f be a real measurable function on E. We prove that with probability one, $$\mathop {\lim \sup }\limits_{n \to \infty } \sum\limits_{k = 1}^n {f(X_k )/\sqrt {2\left( {\sum\limits_{k = 1}^n {f^2 (X_k )} } \right)\log \log \left( {\sum\limits_{k = 1}^n {f^2 (X_k )} } \right)} } $$ $$ = \left( {1 + \left( {\int {f^2 (x)\pi (dx)} } \right)^{ - 1} \int {\sum\limits_{k = 1}^\infty {f(x)P^k f(x)\pi (dx)} } } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} $$ under some best possible conditions.
Keywords: Law of the iterated logarithm; Harris recurrent Markov chain; invariant measure; atom; D-set (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1021630228280 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:12:y:1999:i:2:d:10.1023_a:1021630228280
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1021630228280
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().