EconPapers    
Economics at your fingertips  
 

On a Class of Hungarian Semigroups and the Factorization Theorem of Khinchin

C. Robinson Edward Raja
Additional contact information
C. Robinson Edward Raja: Tata Institute of Fundamental Research

Journal of Theoretical Probability, 1999, vol. 12, issue 2, 561-569

Abstract: Abstract Let G be a connected reductive Lie group and K be a maximal compact subgroup of G. We prove that the semigroup of all K-biinvariant probability measures on G is a strongly stable Hungarian semigroup. Combining with the result [see Rusza and Szekely(9)], we get that the factorization theorem of Khinchin holds for the aforementioned semigroup. We also prove that certain subsemigroups of K-biinvariant measures on G are Hungarian semigroups when G is a connected Lie group such that Ad G is almost algebraic and K is a maximal compact subgroup of G. We also prove a p-adic analogue of these results.

Keywords: Reductive Lie groups; Hungarian semigroup; K-invariant measures (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1023/A:1021642531006 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:12:y:1999:i:2:d:10.1023_a:1021642531006

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1023/A:1021642531006

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:12:y:1999:i:2:d:10.1023_a:1021642531006