First Hitting Times for Some Random Walks on Finite Groups
David Gluck
Additional contact information
David Gluck: Wayne State University
Journal of Theoretical Probability, 1999, vol. 12, issue 3, 739-755
Abstract:
Abstract We consider a random walk on a finite group G based on a generating set that is a union of conjugacy classes. Let the nonnegative integer valued random variable T denote the first time the walk arrives at the identity element of G, if the starting point of the walk is uniformly distributed on G. Under suitable hypotheses, we show that the distribution function F of T is almost exponential, and we give an error term.
Keywords: Random walk; finite group (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1021679932572 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:12:y:1999:i:3:d:10.1023_a:1021679932572
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1021679932572
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().