Rifle Shuffles and Their Associated Dynamical Systems
Steven P. Lalley ()
Additional contact information
Steven P. Lalley: Purdue University
Journal of Theoretical Probability, 1999, vol. 12, issue 4, 903-932
Abstract:
Abstract It is shown that for every stationary sequence of random riffle permutations there is a natural associated dynamical system consisting of random orbits in the space of sequences from a finite alphabet. For many interesting models of card-shuffling, the associated dynamical systems have simple descriptions in terms of random or deterministic measure-preserving maps of the unit interval. It is shown that the rate of mixing for a card-shuffling process is constrained by the fiber entropy h of this map: at least (log N)/h repetitions of the shuffle are needed to randomize a deck of size N, when N is large.
Keywords: Card-shuffling process; mixing; entropy; riffle-shuffles (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1021636902356 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:12:y:1999:i:4:d:10.1023_a:1021636902356
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1021636902356
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().