EconPapers    
Economics at your fingertips  
 

A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables

Qi-Man Shao ()
Additional contact information
Qi-Man Shao: University of Oregon

Journal of Theoretical Probability, 2000, vol. 13, issue 2, 343-356

Abstract: Abstract Let {X i, 1≤i≤n} be a negatively associated sequence, and let {X* i , 1≤i≤n} be a sequence of independent random variables such that X* i and X i have the same distribution for each i=1, 2,..., n. It is shown in this paper that Ef(∑ n i=1 X i)≤Ef(∑ n i=1 X* i ) for any convex function f on R 1 and that Ef(max1≤k≤n ∑ n i=k X i)≤Ef(max1≤k≤n ∑ k i=1 X* i ) for any increasing convex function. Hence, most of the well-known inequalities, such as the Rosenthal maximal inequality and the Kolmogorov exponential inequality, remain true for negatively associated random variables. In particular, the comparison theorem on moment inequalities between negatively associated and independent random variables extends the Hoeffding inequality on the probability bounds for the sum of a random sample without replacement from a finite population.

Keywords: negative dependence; independent random variables; comparison theorem; moment inequality (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1023/A:1007849609234 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:13:y:2000:i:2:d:10.1023_a:1007849609234

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1023/A:1007849609234

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:13:y:2000:i:2:d:10.1023_a:1007849609234