A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables
Qi-Man Shao ()
Additional contact information
Qi-Man Shao: University of Oregon
Journal of Theoretical Probability, 2000, vol. 13, issue 2, 343-356
Abstract:
Abstract Let {X i, 1≤i≤n} be a negatively associated sequence, and let {X* i , 1≤i≤n} be a sequence of independent random variables such that X* i and X i have the same distribution for each i=1, 2,..., n. It is shown in this paper that Ef(∑ n i=1 X i)≤Ef(∑ n i=1 X* i ) for any convex function f on R 1 and that Ef(max1≤k≤n ∑ n i=k X i)≤Ef(max1≤k≤n ∑ k i=1 X* i ) for any increasing convex function. Hence, most of the well-known inequalities, such as the Rosenthal maximal inequality and the Kolmogorov exponential inequality, remain true for negatively associated random variables. In particular, the comparison theorem on moment inequalities between negatively associated and independent random variables extends the Hoeffding inequality on the probability bounds for the sum of a random sample without replacement from a finite population.
Keywords: negative dependence; independent random variables; comparison theorem; moment inequality (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1023/A:1007849609234 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:13:y:2000:i:2:d:10.1023_a:1007849609234
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1007849609234
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().