Entropy and Convergence on Compact Groups
Oliver Johnson () and
Yurii Suhov ()
Additional contact information
Oliver Johnson: CMS
Yurii Suhov: CMS
Journal of Theoretical Probability, 2000, vol. 13, issue 3, 843-857
Abstract:
Abstract We investigate the behaviour of the entropy of convolutions of independent random variables on compact groups. We provide an explicit exponential bound on the rate of convergence of entropy to its maximum. Equivalently, this proves convergence of the density to uniformity, in the sense of Kullback–Leibler. We prove that this convergence lies strictly between uniform convergence of densities (as investigated by Shlosman and Major), and weak convergence (the sense of the classical Ito–Kawada theorem). In fact it lies between convergence in L 1+ε and convergence in L 1.
Keywords: entropy; compact groups; convolution (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1007818830500 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:13:y:2000:i:3:d:10.1023_a:1007818830500
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1007818830500
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().