Time-Space Harmonic Polynomials for Continuous-Time Processes and an Extension
Arindam Sengupta ()
Additional contact information
Arindam Sengupta: Indian Statistical Institute
Journal of Theoretical Probability, 2000, vol. 13, issue 4, 951-976
Abstract:
Abstract A time-space harmonic polynomial for a stochastic process M=(M t) is a polynomial P in two variables such that P(t, M t) is a martingale. In this paper, we investigate conditions for the existence of such polynomials of each degree in the second, “space,” argument. We also describe various properties a sequence of time-space harmonic polynomials may possess and the interaction of these properties with distributional properties of the underlying process. Thus, continuous-time conterparts to the results of Goswami and Sengupta,(2) where the analoguous problem in discrete time was considered, are derived. A few additional properties are also considered. The resulting properties of the process include independent increments, stationary independent increments and semi-stability. Finally, a generalization to a “measure” proposed by Hochberg(3) on path space is obtained.
Keywords: time-space harmonic polynomials; Lévy processes; Semi-stable Markov processes; Hochberg's measure (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1007857823002 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:13:y:2000:i:4:d:10.1023_a:1007857823002
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1007857823002
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().