On Limit Results for a Class of Singularly Perturbed Switching Diffusions
G. Yin
Additional contact information
G. Yin: Wayne State University
Journal of Theoretical Probability, 2001, vol. 14, issue 3, 673-697
Abstract:
Abstract This work is devoted to the weak convergence analysis of a class of aggregated processes resulting from singularly perturbed switching diffusions with fast and slow motions. The processes consist of diffusion components and pure jump components. The states of the pure jump component are naturally divisible into a number of classes. Aggregate the states in each weakly irreducible class by a single state leading to an aggregated process. Under suitable conditions, it is shown that the aggregated process converges weakly to a switching diffusion process whose generator is an average with respect to the quasi-stationary distribution of the jump process.
Keywords: singularly perturbed Markov process; switching diffusion; aggregation; weak convergence (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1017541022565 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:14:y:2001:i:3:d:10.1023_a:1017541022565
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1017541022565
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().