A Filtered Version of the Bipolar Theorem of Brannath and Schachermayer
Gordan Žitković ()
Additional contact information
Gordan Žitković: Columbia University
Journal of Theoretical Probability, 2002, vol. 15, issue 1, 41-61
Abstract:
Abstract We extend the Bipolar Theorem of Kramkov and Schachermayer(12) to the space of nonnegative càdlàg supermartingales on a filtered probability space. We formulate the notion of fork-convexity as an analogue to convexity in this setting. As an intermediate step in the proof of our main result we establish a conditional version of the Bipolar theorem. In an application to mathematical finance we describe the structure of the set of dual processes of the utility maximization problem of Kramkov and Schachermayer(12) and give a budget-constraint characterization of admissible consumption processes in an incomplete semimartingale market.
Keywords: bipolar theorem; stochastic processes; positive supermartingales; duality; mathematical finance (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1023/A:1013885121598 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:15:y:2002:i:1:d:10.1023_a:1013885121598
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1013885121598
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().