Stability and Attraction to Normality for Lévy Processes at Zero and at Infinity
R. A. Doney () and
R. A. Maller ()
Additional contact information
R. A. Doney: University of Manchester
R. A. Maller: University of Western Australia
Journal of Theoretical Probability, 2002, vol. 15, issue 3, 751-792
Abstract:
Abstract We prove some limiting results for a Lévy process X t as t↓0 or t→∞, with a view to their ultimate application in boundary crossing problems for continuous time processes. In the present paper we are mostly concerned with ideas related to relative stability and attraction to the normal distribution on the one hand and divergence to large values of the Lévy process on the other. The aim is to find analytical conditions for these kinds of behaviour which are in terms of the characteristics of the process, rather than its distribution. Some surprising results occur, especially for the case t↓0; for example, we may have X t /t → P +∞ (t↓0) (weak divergence to +∞), whereas X t /t→∞ a.s. (t↓0) is impossible (both are possible when t→∞), and the former can occur when the negative Lévy spectral component dominates the positive, in a certain sense. “Almost sure stability” of X t , i.e., X t tending to a nonzero constant a.s. as t→∞ or as t↓0, after normalisation by a non-stochastic measurable function, reduces to the same type of convergence but with normalisation by t, thus is equivalent to “strong law” behaviour. Boundary crossing problems which are amenable to the methods we develop arise in areas such as sequential analysis and option pricing problems in finance.
Keywords: Lévy processes; relative stability; asymptotic normality; domains of attraction (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1023/A:1016228101053 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:15:y:2002:i:3:d:10.1023_a:1016228101053
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1016228101053
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().