A Large Deviations Principle Related to the Strong Arc-Sine Law
Alain Rouault (),
Marc Yor and
Marguerite Zani ()
Additional contact information
Alain Rouault: LAMA, Université de Versailles
Marc Yor: Université Paris 6, Site Chevaleret
Marguerite Zani: Université des Sciences et Technologies de Lille U.F.R. de Mathématiques, Bât
Journal of Theoretical Probability, 2002, vol. 15, issue 3, 793-815
Abstract:
Abstract We show a large deviations principle for the family of random variables $$\{ \frac{1}{t}\int_0^t 1 _{B_u } >0du\} $$ when t→+∞, where B=(B u ,u≥0) is a standard linear Brownian motion.
Keywords: Arc-sine law; large deviations; Ornstein–Uhlenbeck process (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1023/A:1016280117892 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:15:y:2002:i:3:d:10.1023_a:1016280117892
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1016280117892
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().