On the Link Between Small Ball Probabilities and the Quantization Problem for Gaussian Measures on Banach Spaces
S. Dereich (),
F. Fehringer (),
A. Matoussi () and
M. Scheutzow ()
Journal of Theoretical Probability, 2003, vol. 16, issue 1, 249-265
Abstract:
Abstract Let μ be a centered Gaussian measure on a separable Banach space E and N a positive integer. We study the asymptotics as N→∞ of the quantization error, i.e., the infimum over all subsets ℰ of E of cardinality N of the average distance w.r.t. μ to the closest point in the set ℰ. We compare the quantization error with the average distance which is obtained when the set ℰ is chosen by taking N i.i.d. copies of random elements with law μ. Our approach is based on the study of the asymptotics of the measure of a small ball around 0. Under slight conditions on the regular variation of the small ball function, we get upper and lower bounds of the deterministic and random quantization error and are able to show that both are of the same order. Our conditions are typically satisfied in case the Banach space is infinite dimensional.
Keywords: High-resolution quantization; small ball probability; Gaussian process; isoperimetric inequality (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1023/A:1022242924198 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:16:y:2003:i:1:d:10.1023_a:1022242924198
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1022242924198
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().