Permutation Matrices, Wreath Products, and the Distribution of Eigenvalues
Kelly Wieand ()
Additional contact information
Kelly Wieand: University of Chicago
Journal of Theoretical Probability, 2003, vol. 16, issue 3, 599-623
Abstract:
Abstract We consider a class of random matrix ensembles which can be constructed from the random permutation matrices by replacing the nonzero entries of the n×n permutation matrix matrix with M×M diagonal matrices whose entries are random Kth roots of unity or random points on the unit circle. Let X be the number of eigenvalues lying in a specified arc I of the unit circle, and consider the standardized random variable (X−E[X])/(Var(X))1/2. We show that for a fixed set of arcs I 1,...,I N , the corresponding standardized random variables are jointly normal in the large n limit, and compare the covariance structures which arise with results for other random matrix ensembles.
Keywords: random matrices; permutations; wreath products (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1023/A:1025616431496 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:16:y:2003:i:3:d:10.1023_a:1025616431496
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1023/A:1025616431496
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().