EconPapers    
Economics at your fingertips  
 

Necessary and Sufficient Condition for the Functional Central Limit Theorem in Hölder Spaces

Alfredas Račkauskas () and Charles Suquet ()
Additional contact information
Alfredas Račkauskas: Vilnius University
Charles Suquet: Université Lille I

Journal of Theoretical Probability, 2004, vol. 17, issue 1, 221-243

Abstract: Abstract Let (X i ) i≥1 be an i.i.d. sequence of random elements in the Banach space B, S n ≔X 1+⋅⋅⋅+X n and ξ n be the random polygonal line with vertices (k/n,S k ), k=0,1,...,n. Put ρ(h)=h α L(1/h), 0≤h≤1 with 0 t)=o(t −p(α)) where p(α)=1/(1/2−α). This completes Lamperti (1962) invariance principle.

Keywords: Central limit theorem in Banach spaces; Hölder space; invariance principle; partial sums process (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1023/B:JOTP.0000020482.66224.6c Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:17:y:2004:i:1:d:10.1023_b:jotp.0000020482.66224.6c

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1023/B:JOTP.0000020482.66224.6c

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:17:y:2004:i:1:d:10.1023_b:jotp.0000020482.66224.6c