EconPapers    
Economics at your fingertips  
 

Range of Brownian Motion with Drift

Etienne Tanré () and Pierre Vallois ()
Additional contact information
Etienne Tanré: INRIA, Projet OMEGA
Pierre Vallois: Institut Élie Cartan

Journal of Theoretical Probability, 2006, vol. 19, issue 1, 45-69

Abstract: Abstract Let (B δ (t)) t ≥ 0 be a Brownian motion starting at 0 with drift δ > 0. Define by induction S 1=− inf t ≥ 0 B δ (t), ρ1 the last time such that B δ (ρ1)=−S 1, S 2=sup0≤ t ≤ρ 1 B δ (t), ρ2 the last time such that B δ (ρ2)=S 2 and so on. Setting A k =S k +S k+1; k ≥ 1, we compute the law of (A 1,...,A k ) and the distribution of (B δ (t+ρ l) − B δ (ρ l ); 0 ≤ t ≤ ρ l-1 − ρ l )2 ≤ l ≤ k for any k ≥ 2, conditionally on (A 1,...,A k ). We determine the law of the range R δ (t) of (B δ (s)) s≥ 0 at time t, and the first range time θδ (a) (i.e. θδ (a)=inf{t > 0; R δ (t) > a}). We also investigate the asymptotic behaviour of θ δ (a) (resp. R δ (t)) as a → ∞ (resp. t → ∞).

Keywords: Range process; enlargement of filtration; Brownian motion with drift; 60E10; 60F05; 60G17; 60G40; 60G44; 60J10; 60J60; 60J65 (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-006-0012-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:19:y:2006:i:1:d:10.1007_s10959-006-0012-7

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-006-0012-7

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:19:y:2006:i:1:d:10.1007_s10959-006-0012-7