Stochastic Equations with Time-Dependent Drift Driven by Levy Processes
V. P. Kurenok ()
Additional contact information
V. P. Kurenok: University of Wisconsin-Green Bay
Journal of Theoretical Probability, 2007, vol. 20, issue 4, 859-869
Abstract:
Abstract The stochastic equation dX t =dS t +a(t,X t )dt, t≥0, is considered where S is a one-dimensional Levy process with the characteristic exponent ψ(ξ),ξ∈ℝ. We prove the existence of (weak) solutions for a bounded, measurable coefficient a and any initial value X 0=x 0∈ℝ when (ℛe ψ(ξ))−1=o(|ξ|−1) as |ξ|→∞. These conditions coincide with those found by Tanaka, Tsuchiya and Watanabe (J. Math. Kyoto Univ. 14(1), 73–92, 1974) in the case of a(t,x)=a(x). Our approach is based on Krylov’s estimates for Levy processes with time-dependent drift. Some variants of those estimates are derived in this note.
Keywords: One-dimensional Levy processes; Time-dependent drift; Krylov’s estimates; Weak convergence (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-007-0086-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:20:y:2007:i:4:d:10.1007_s10959-007-0086-x
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-007-0086-x
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().