Generating Random Vectors in (ℤ/pℤ) d via an Affine Random Process
Martin Hildebrand () and
Joseph McCollum ()
Additional contact information
Martin Hildebrand: University at Albany, State University of New York
Joseph McCollum: Elms College
Journal of Theoretical Probability, 2008, vol. 21, issue 4, 802-811
Abstract:
Abstract This paper considers some random processes of the form X n+1=T X n +B n (mod p) where B n and X n are random variables over (ℤ/pℤ) d and T is a fixed d×d integer matrix which is invertible over the complex numbers. For a particular distribution for B n , this paper improves results of Asci to show that if T has no complex eigenvalues of length 1, then for integers p relatively prime to det (T), order (log p)2 steps suffice to make X n close to uniformly distributed where X 0 is the zero vector. This paper also shows that if T has a complex eigenvalue which is a root of unity, then order p b steps are needed for X n to get close to uniformly distributed for some positive value b≤2 which may depend on T and X 0 is the zero vector.
Keywords: Random processes; Fourier transform; Upper bound lemma (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-007-0135-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:21:y:2008:i:4:d:10.1007_s10959-007-0135-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-007-0135-5
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().