Polynomial Birth–Death Distribution Approximation in the Wasserstein Distance
Aihua Xia () and
Fuxi Zhang ()
Additional contact information
Aihua Xia: The University of Melbourne
Fuxi Zhang: The University of Melbourne
Journal of Theoretical Probability, 2009, vol. 22, issue 2, 294-310
Abstract:
Abstract The polynomial birth–death distribution (abbreviated, PBD) on ℐ={0,1,2,…} or ℐ={0,1,2,…,m} for some finite m introduced in Brown and Xia (Ann. Probab. 29:1373–1403, 2001) is the equilibrium distribution of the birth–death process with birth rates {α i } and death rates {β i }, where α i ≥0 and β i ≥0 are polynomial functions of i∈ℐ. The family includes Poisson, negative binomial, binomial, and hypergeometric distributions. In this paper, we give probabilistic proofs of various Stein’s factors for the PBD approximation with α i =a and β i =i+bi(i−1) in terms of the Wasserstein distance. The paper complements the work of Brown and Xia (Ann. Probab. 29:1373–1403, 2001) and generalizes the work of Barbour and Xia (Bernoulli 12:943–954, 2006) where Poisson approximation (b=0) in the Wasserstein distance is investigated. As an application, we establish an upper bound for the Wasserstein distance between the PBD and Poisson binomial distribution and show that the PBD approximation to the Poisson binomial distribution is much more precise than the approximation by the Poisson or shifted Poisson distributions.
Keywords: Stein’s method; Stein’s factors; Total variation distance; 60F05; 60J27 (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-008-0207-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:22:y:2009:i:2:d:10.1007_s10959-008-0207-1
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-008-0207-1
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().