The Passage Time Distribution for a Birth-and-Death Chain: Strong Stationary Duality Gives a First Stochastic Proof
James Allen Fill ()
Additional contact information
James Allen Fill: The Johns Hopkins University
Journal of Theoretical Probability, 2009, vol. 22, issue 3, 543-557
Abstract:
Abstract A well-known theorem usually attributed to Keilson states that, for an irreducible continuous-time birth-and-death chain on the nonnegative integers and any d, the passage time from state 0 to state d is distributed as a sum of d independent exponential random variables. Until now, no probabilistic proof of the theorem has been known. In this paper we use the theory of strong stationary duality to give a stochastic proof of a similar result for discrete-time birth-and-death chains and geometric random variables, and the continuous-time result (which can also be given a direct stochastic proof) then follows immediately. In both cases we link the parameters of the distributions to eigenvalue information about the chain. We also discuss how the continuous-time result leads to a proof of the Ray–Knight theorem. Intimately related to the passage-time theorem is a theorem of Fill that any fastest strong stationary time T for an ergodic birth-and-death chain on {0,…,d} in continuous time with generator G, started in state 0, is distributed as a sum of d independent exponential random variables whose rate parameters are the nonzero eigenvalues of −G. Our approach yields the first (sample-path) construction of such a T for which individual such exponentials summing to T can be explicitly identified.
Keywords: Markov chains; Birth-and-death chains; Passage time; Strong stationary duality; Anti-dual; Eigenvalues; Stochastic monotonicity; Ray–Knight theorem; 60J25; 60J35; 60J10; 60G40 (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-009-0235-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:22:y:2009:i:3:d:10.1007_s10959-009-0235-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-009-0235-5
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().