EconPapers    
Economics at your fingertips  
 

Uniformly Accurate Quantile Bounds for Sums of Arbitrary Independent Random Variables

Michael J. Klass () and Krzysztof Nowicki ()
Additional contact information
Michael J. Klass: University of California
Krzysztof Nowicki: Lund University

Journal of Theoretical Probability, 2010, vol. 23, issue 4, 1068-1091

Abstract: Abstract Fix any n≥1. Let X 1,…,X n be independent random variables such that S n =X 1+⋅⋅⋅+X n , and let $S^{*}_{n}=\sup_{1\le k\le n}S_{k}$ . We construct upper and lower bounds for s y and $s_{y}^{*}$ , the upper $\frac{1}{y}$ th quantiles of S n and $S^{*}_{n}$ , respectively. Our approximations rely on a computable quantity Q y and an explicit universal constant γ y , the latter depending only on y, for which we prove that $$\begin{array}{l}\displaystyle s_y\le s_y^*\le Q_y\quad\mbox{for }y>1,\\[4pt]\displaystyle \gamma_{3y/16}Q_{3y/16}-Q_1\le s_y^*\quad\mbox{for }y>\frac{32}{3},\end{array}$$ and $$\gamma_{u(y)}Q_{u(y)}-2Q_1\le s_y\quad \mbox{for }y>\frac{64}{3},$$ where $$u(y)=\frac{3y}{16}\biggl(\frac{1+\sqrt{1-\frac{64}{3y}}}{2}\biggr )\quad\mbox{and}\quad\gamma_y\to\frac{1}{3}\quad\mbox{as}\ y\to \infty.$$

Keywords: Sum of independent random variables; Tail distributions; Tail probabilities; Quantile approximation; Hoffmann-Jørgensen/Klass–Nowicki inequality; 60G50; 60E15; 46E30; 46B09 (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10959-009-0254-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0254-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-009-0254-2

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0254-2