Random Walks on Directed Covers of Graphs
Lorenz A. Gilch () and
Sebastian Müller ()
Additional contact information
Lorenz A. Gilch: Graz University of Technology
Sebastian Müller: Graz University of Technology
Journal of Theoretical Probability, 2011, vol. 24, issue 1, 118-149
Abstract:
Abstract Directed covers of finite graphs are also known as periodic trees or trees with finitely many cone types. We expand the existing theory of directed covers of finite graphs to those of infinite graphs. While the lower growth rate still equals the branching number, upper and lower growth rates no longer coincide in general. Furthermore, the behavior of random walks on directed covers of infinite graphs is more subtle. We provide a classification in terms of recurrence and transience and point out that the critical random walk may be recurrent or transient. Our proof is based on the observation that recurrence of the random walk is equivalent to the almost sure extinction of an appropriate branching process. Two examples in random environment are provided: homesick random walk on infinite percolation clusters and random walk in random environment on directed covers. Furthermore, we calculate, under reasonable assumptions, the rate of escape with respect to suitable length functions and prove the existence of the asymptotic entropy providing an explicit formula which is also a new result for directed covers of finite graphs. In particular, the asymptotic entropy of random walks on directed covers of finite graphs is positive if and only if the random walk is transient.
Keywords: Trees; Random walk; Recurrence; Transience; Upper Collatz–Wielandt number; Branching process; Rate of escape; Asymptotic entropy; 05C05; 60J10; 60F05; 60J85 (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-009-0256-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:24:y:2011:i:1:d:10.1007_s10959-009-0256-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-009-0256-0
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().