Random Walks on Dihedral Groups
Joseph McCollum ()
Additional contact information
Joseph McCollum: Siena College
Journal of Theoretical Probability, 2011, vol. 24, issue 2, 397-408
Abstract:
Abstract In this paper, we look at the lower bounds of two specific random walks on the dihedral group. The first theorem discusses a random walk generated with equal probabilities by one rotation and one flip. We show that roughly p 2 steps are necessary for the walk to become close to uniformly distributed on all of D 2p where p≥3 is an integer. Next we take a random walk on the dihedral group generated by a random k-subset of the dihedral group. The latter theorem shows that it is necessary to take roughly p 2/(k−1) steps in the typical random walk to become close to uniformly distributed on all of D 2p . We note that there is at least one rotation and one flip in the k-subset, or the random walk generated by this subset has periodicity problems or will not generate all of D 2p .
Keywords: Random walk; Dihedral group; Lower bounds; 60G50 (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-010-0307-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:24:y:2011:i:2:d:10.1007_s10959-010-0307-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-010-0307-6
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().