On Time-Dependent Functionals of Diffusions Corresponding to Divergence Form Operators
Tomasz Klimsiak ()
Additional contact information
Tomasz Klimsiak: Nicolaus Copernicus University
Journal of Theoretical Probability, 2013, vol. 26, issue 2, 437-473
Abstract:
Abstract We consider processes of the form [s,T]∋t↦u(t,X t ), where (X,P s,x ) is a multidimensional diffusion corresponding to a uniformly elliptic divergence form operator. We show that if $u\in{\mathbb{L}}_{2}(0,T;H_{\rho }^{1})$ with $\frac{\partial u}{\partial t} \in{\mathbb{L}}_{2}(0,T;H_{\rho }^{-1})$ then there is a quasi-continuous version $\tilde{u}$ of u such that $\tilde{u}(t,X_{t})$ is a P s,x -Dirichlet process for quasi-every (s,x)∈[0,T)×ℝ d with respect to parabolic capacity, and we describe the martingale and the zero-quadratic variation parts of its decomposition. We also give conditions on u ensuring that $\tilde{u}(t,X_{t})$ is a semimartingale.
Keywords: Dirichlet process; Diffusion; Divergence form operator; 60H05; 60H30 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-011-0381-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:26:y:2013:i:2:d:10.1007_s10959-011-0381-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-011-0381-4
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().