The Maximal Variation of Martingales of Probabilities and Repeated Games with Incomplete Information
Abraham Neyman ()
Additional contact information
Abraham Neyman: The Hebrew University of Jerusalem
Journal of Theoretical Probability, 2013, vol. 26, issue 2, 557-567
Abstract:
Abstract The variation of a martingale $p_{0}^{k}=p_{0},\ldots,p_{k}$ of probabilities on a finite (or countable) set X is denoted $V(p_{0}^{k})$ and defined by $$ V\bigl(p_0^k\bigr)=E\Biggl(\sum_{t=1}^k\|p_t-p_{t-1}\|_1\Biggr). $$ It is shown that $V(p_{0}^{k})\leq\sqrt{2kH(p_{0})}$ , where H(p) is the entropy function H(p)=−∑ x p(x)logp(x), and log stands for the natural logarithm. Therefore, if d is the number of elements of X, then $V(p_{0}^{k})\leq\sqrt{2k\log d}$ . It is shown that the order of magnitude of the bound $\sqrt{2k\log d}$ is tight for d≤2 k : there is C>0 such that for all k and d≤2 k , there is a martingale $p_{0}^{k}=p_{0},\ldots,p_{k}$ of probabilities on a set X with d elements, and with variation $V(p_{0}^{k})\geq C\sqrt{2k\log d}$ . An application of the first result to game theory is that the difference between v k and lim j v j , where v k is the value of the k-stage repeated game with incomplete information on one side with d states, is bounded by $\|G\|\sqrt{2k^{-1}\log d}$ (where ∥G∥ is the maximal absolute value of a stage payoff). Furthermore, it is shown that the order of magnitude of this game theory bound is tight.
Keywords: Maximal martingale variation; Posteriors variation; Repeated games with incomplete information; 60G42; 91A20 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-012-0447-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:26:y:2013:i:2:d:10.1007_s10959-012-0447-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-012-0447-y
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().