An Invariance Principle for Fractional Brownian Sheets
Yizao Wang ()
Additional contact information
Yizao Wang: University of Cincinnati
Journal of Theoretical Probability, 2014, vol. 27, issue 4, 1124-1139
Abstract:
Abstract We establish a central limit theorem for partial sums of stationary linear random fields with dependent innovations, and an invariance principle for anisotropic fractional Brownian sheets. Our result is a generalization of the invariance principle for fractional Brownian motions by Dedecker et al. (Bernoulli 17:88–113, 2011) to high dimensions. A key ingredient of their argument, the martingale approximation, is replaced by an $$m$$ -approximation argument. An important tool of our approach is a moment inequality for stationary random fields recently established by El Machkouri et al. (Stoch. Process. Appl. 123:1–14, 2013).
Keywords: $$m$$ -Dependence; Central limit theorem; Invariance principle; Fractional Brownian sheet; 60F17; 60G22 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-013-0483-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0483-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-013-0483-2
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().