Return Probabilities for the Reflected Random Walk on $$\mathbb{N }_0$$ N 0
Rim Essifi () and
Marc Peigné ()
Additional contact information
Rim Essifi: LMPT, UMR 7350
Marc Peigné: LMPT, UMR 7350
Journal of Theoretical Probability, 2015, vol. 28, issue 1, 231-258
Abstract:
Abstract Let $$(Y_n)$$ ( Y n ) be a sequence of i.i.d. $$\mathbb{Z }$$ Z -valued random variables with law $$\mu $$ μ . The reflected random walk $$(X_n)$$ ( X n ) is defined recursively by $$X_0=x \in \mathbb{N }_0, X_{n+1}=\vert X_n+Y_{n+1}\vert $$ X 0 = x ∈ N 0 , X n + 1 = | X n + Y n + 1 | . Under mild hypotheses on the law $$\mu $$ μ , it is proved that, for any $$ y \in \mathbb{N }_0$$ y ∈ N 0 , as $$n \rightarrow +\infty $$ n → + ∞ , one gets $$\mathbb{P }_x[X_n=y]\sim C_{x, y} R^{-n} n^{-3/2}$$ P x [ X n = y ] ∼ C x , y R − n n − 3 / 2 when $$\sum _{k\in \mathbb{Z }} k\mu (k) >0$$ ∑ k ∈ Z k μ ( k ) > 0 and $$\mathbb{P }_x[X_n=y]\sim C_{ y} n^{-1/2}$$ P x [ X n = y ] ∼ C y n − 1 / 2 when $$\sum _{k\in \mathbb{Z }} k\mu (k) =0$$ ∑ k ∈ Z k μ ( k ) = 0 , for some constants $$R, C_{x, y}$$ R , C x , y and $$C_y >0$$ C y > 0 .
Keywords: Random walks; Local limit theorem; Generating function; Wiener-Hopf factorization; 60J10; 60J15; 60B15; 60F15 (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-013-0490-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:28:y:2015:i:1:d:10.1007_s10959-013-0490-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-013-0490-3
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().