EconPapers    
Economics at your fingertips  
 

The Universality of Homogeneous Polynomial Forms and Critical Limits

Shuyang Bai and Murad S. Taqqu ()
Additional contact information
Shuyang Bai: Boston University
Murad S. Taqqu: Boston University

Journal of Theoretical Probability, 2016, vol. 29, issue 4, 1710-1727

Abstract: Abstract Nourdin et al. (Ann Probab 38(5):1947–1985, 2010) established the following universality result: if a sequence of off-diagonal homogeneous polynomial forms in i.i.d. standard normal random variables converges in distribution to a normal, then the convergence also holds if one replaces these i.i.d. standard normal random variables in the polynomial forms by any independent standardized random variables with uniformly bounded third absolute moment. The result, which was stated for polynomial forms with a finite number of terms, can be extended to allow an infinite number of terms in the polynomial forms. Based on a contraction criterion derived from this extended universality result, we prove a central limit theorem for a strongly dependent nonlinear process whose memory parameter lies at the boundary between short and long memory.

Keywords: Universality; Wiener chaos; Long memory; Long-range dependence; 60F05 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-015-0613-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0613-0

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-015-0613-0

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0613-0