EconPapers    
Economics at your fingertips  
 

Uniform Bounds on the Relative Error in the Approximation of Upper Quantiles for Sums of Arbitrary Independent Random Variables

Michael J. Klass () and Krzysztof Nowicki ()
Additional contact information
Michael J. Klass: University of California, Berkeley
Krzysztof Nowicki: Lund University

Journal of Theoretical Probability, 2016, vol. 29, issue 4, 1485-1509

Abstract: Abstract Fix any $$n\ge 1$$ n ≥ 1 . Let $$\tilde{X}_1,\ldots ,\tilde{X}_n$$ X ~ 1 , … , X ~ n be independent random variables. For each $$1\le j \le n$$ 1 ≤ j ≤ n , $$\tilde{X}_j$$ X ~ j is transformed in a canonical manner into a random variable $$X_j$$ X j . The $$X_j$$ X j inherit independence from the $$\tilde{X}_j$$ X ~ j . Let $$s_y$$ s y and $$s_y^*$$ s y ∗ denote the upper $$\frac{1}{y}{\underline{\text{ th }}}$$ 1 y th ̲ quantile of $$S_n=\sum _{j=1}^nX_j$$ S n = ∑ j = 1 n X j and $$S^*_n=\sup _{1\le k\le n}S_k$$ S n ∗ = sup 1 ≤ k ≤ n S k , respectively. We construct a computable quantity $$\underline{Q}_y$$ Q ̲ y based on the marginal distributions of $$X_1,\ldots ,X_n$$ X 1 , … , X n to produce upper and lower bounds for $$s_y$$ s y and $$s_y^*$$ s y ∗ . We prove that for $$y\ge 8$$ y ≥ 8 $$\begin{aligned} 6^{-1} \gamma _{3y/16}\underline{Q}_{3y/16}\le s^*_{y}\le \underline{Q}_y \end{aligned}$$ 6 - 1 γ 3 y / 16 Q ̲ 3 y / 16 ≤ s y ∗ ≤ Q ̲ y where $$\begin{aligned} \gamma _y=\frac{1}{2w_y+1} \end{aligned}$$ γ y = 1 2 w y + 1 and $$w_y$$ w y is the unique solution of $$\begin{aligned} \Big (\frac{w_y}{e\ln (\frac{y}{y-2})}\Big )^{w_y}=2y-4 \end{aligned}$$ ( w y e ln ( y y - 2 ) ) w y = 2 y - 4 for $$w_y>\ln (\frac{y}{y-2})$$ w y > ln ( y y - 2 ) , and for $$y\ge 37$$ y ≥ 37 $$\begin{aligned} \frac{1}{9}\gamma _{u(y)}\underline{Q}_{u(y)} 0$$ a > 0 1 $$\begin{aligned} \sum _{j=1}^{\infty }E\{(\tilde{X}_j-m_j)^2\wedge a^2\}

Keywords: Sum of independent random variables; Tail distributions; Tail probabilities; Quantile approximation; Hoffmann–Jørgensen/Klass–Nowicki inequality; 60G50; 60E15; 62G32 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-015-0615-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0615-y

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-015-0615-y

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0615-y