EconPapers    
Economics at your fingertips  
 

Selfdecomposable Fields

Ole Barndorff-Nielsen, Orimar Sauri () and Benedykt Szozda ()
Additional contact information
Orimar Sauri: Aarhus University
Benedykt Szozda: Aarhus University

Journal of Theoretical Probability, 2017, vol. 30, issue 1, 233-267

Abstract: Abstract In the present paper, we study selfdecomposability of random fields, as defined directly rather than in terms of finite-dimensional distributions. The main tools in our analysis are the master Lévy measure and the associated Lévy-Itô representation. We give the dilation criterion for selfdecomposability analogous to the classical one. Next, we give necessary and sufficient conditions (in terms of the kernel function) for a Volterra field driven by a Lévy basis to be selfdecomposable. In this context, we also study the so-called Urbanik classes of random fields. We follow this with the study of existence and selfdecomposability of integrated Volterra fields. Finally, we introduce infinitely divisible field-valued Lévy processes, give the Lévy-Itô representation associated with them and study stochastic integration with respect to such processes. We provide examples in the form of Lévy semistationary processes with a Gamma kernel and Ornstein–Uhlenbeck processes.

Keywords: Selfdecomposability of random fields; Urbanik classes of random fields; Random fields; Volterra fields; 60E07; 60G51; 60G60 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-015-0630-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0630-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-015-0630-z

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0630-z