Asymptotic Expansion for the Distribution Density Function of the Compound Poisson Process in Large Deviations
Aurelija Kasparavičiūtė () and
Dovilė Deltuvienė ()
Additional contact information
Aurelija Kasparavičiūtė: Vilnius Gediminas Technical University
Dovilė Deltuvienė: Vilnius Gediminas Technical University
Journal of Theoretical Probability, 2017, vol. 30, issue 4, 1655-1676
Abstract:
Abstract The paper is devoted to obtaining the asymptotic expansion and determination of the structure of the remainder term taking into consideration large deviations in the Cramér zone for the distribution density function of the standardized compound Poisson process. Following Deltuvienė and Saulis (Acta Appl Math 78:87–97, 2003. doi: 10.1023/A:1025783905023 ; Lith Math J 41:620–625, 2001) and Saulis and Statulevičius [Limit theorems for large deviations. Mathematics and its applications (Soviet Series), vol 73, pp 154–187, Kluwer, Dordrecht, 1991], the solution to the problem is achieved by first using a general lemma presented by Saulis (see Lemma 6.1 in Saulis and Statulevičius 1991, p. 154) on the asymptotic expansion for the density function of an arbitrary random variable with zero mean and unit variance and combining methods for cumulants and characteristic functions. By taking into consideration the large deviations in the Cramér zone for the density function of the standardized compound Poisson process, the result for the asymptotic expansion extends the asymptotic expansions for the density function of the sums of non-random number of summands (Deltuvienė and Saulis 2003, 2001).
Keywords: Compound Poisson process; Theorems of large deviations; Asymptotic expansion; Cumulant method; 60F10 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-016-0696-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0696-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-016-0696-2
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().