An Erdös–Révész Type Law of the Iterated Logarithm for Order Statistics of a Stationary Gaussian Process
K. Dębicki () and
K. M. Kosiński ()
Additional contact information
K. Dębicki: University of Wrocław
K. M. Kosiński: University of Wrocław
Journal of Theoretical Probability, 2018, vol. 31, issue 1, 579-597
Abstract:
Abstract Let $$\{X(t):t\in \mathbb R_+\}$$ { X ( t ) : t ∈ R + } be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, $$\mathbb E X(t) = 0, \mathbb E X^2(t) = 1$$ E X ( t ) = 0 , E X 2 ( t ) = 1 and correlation function satisfying (i) $$r(t) = 1 - C|t|^{\alpha } + o(|t|^{\alpha })$$ r ( t ) = 1 - C | t | α + o ( | t | α ) as $$t\rightarrow 0$$ t → 0 for some $$0\le \alpha \le 2$$ 0 ≤ α ≤ 2 and $$C>0$$ C > 0 ; (ii) $$\sup _{t\ge s}|r(t)| 0$$ s > 0 and (iii) $$r(t) = O(t^{-\lambda })$$ r ( t ) = O ( t - λ ) as $$t\rightarrow \infty $$ t → ∞ for some $$\lambda >0$$ λ > 0 . For any $$n\ge 1$$ n ≥ 1 , consider n mutually independent copies of X and denote by $$\{X_{r:n}(t):t\ge 0\}$$ { X r : n ( t ) : t ≥ 0 } the rth smallest order statistics process, $$1\le r\le n$$ 1 ≤ r ≤ n . We provide a tractable criterion for assessing whether, for any positive, non-decreasing function $$f, \mathbb P(\mathscr {E}_f)=\mathbb P(X_{r:n}(t) > f(t)\, \text { i.o.})$$ f , P ( E f ) = P ( X r : n ( t ) > f ( t ) i.o. ) equals 0 or 1. Using this criterion we find, for a family of functions $$f_p(t)$$ f p ( t ) such that $$z_p(t)=\mathbb P(\sup _{s\in [0,1]}X_{r:n}(s)>f_p(t))=O((t\log ^{1-p} t)^{-1})$$ z p ( t ) = P ( sup s ∈ [ 0 , 1 ] X r : n ( s ) > f p ( t ) ) = O ( ( t log 1 - p t ) - 1 ) , that $$\mathbb P(\mathscr {E}_{f_p})= 1_{\{p\ge 0\}}$$ P ( E f p ) = 1 { p ≥ 0 } . Consequently, with $$\xi _p (t) = \sup \{s:0\le s\le t, X_{r:n}(s)\ge f_p(s)\}$$ ξ p ( t ) = sup { s : 0 ≤ s ≤ t , X r : n ( s ) ≥ f p ( s ) } , for $$p\ge 0$$ p ≥ 0 we have $$\lim _{t\rightarrow \infty }\xi _p(t)=\infty $$ lim t → ∞ ξ p ( t ) = ∞ and $$\limsup _{t\rightarrow \infty }(\xi _p(t)-t)=0$$ lim sup t → ∞ ( ξ p ( t ) - t ) = 0 a.s. Complementarily, we prove an Erdös–Révész type law of the iterated logarithm lower bound on $$\xi _p(t)$$ ξ p ( t ) , namely, that $$\liminf _{t\rightarrow \infty }(\xi _p(t)-t)/h_p(t) = -1$$ lim inf t → ∞ ( ξ p ( t ) - t ) / h p ( t ) = - 1 a.s. for $$p>1$$ p > 1 and $$\liminf _{t\rightarrow \infty }\log (\xi _p(t)/t)/(h_p(t)/t) = -1$$ lim inf t → ∞ log ( ξ p ( t ) / t ) / ( h p ( t ) / t ) = - 1 a.s. for $$p\in (0,1]$$ p ∈ ( 0 , 1 ] , where $$h_p(t)=(1/z_p(t))p\log \log t$$ h p ( t ) = ( 1 / z p ( t ) ) p log log t .
Keywords: Extremes of Gaussian processes; Order statistics process; Law of the iterated logarithm; Primary: 60F15; 60G70; Secondary: 60G22 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-016-0710-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:31:y:2018:i:1:d:10.1007_s10959-016-0710-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-016-0710-8
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().